Classification approach based on non-negative least squares
نویسندگان
چکیده
A non-negative least squares classifier is proposed in this paper for classifying under-complete data. The idea is that unknown samples can be approximated by sparse non-negative linear combinations of few training samples. Based on sparse coefficient vectors representing the training data, a sparse interpreter can then be used to predict the class label. We have devised new sparse methods which can to tensor data and to multi-class data. Permutation test shows that our approach requires a small number of training samples to obtain significant accuracy. Statistical comparisons on various data shows that our methods perform as well as support vector machines while being faster. Our approach is very robust to missing values and noise. We also show that with appropriate kernel functions, our methods perform very well on three-dimensional tensor data and run fairly fast. & 2013 Elsevier B.V. All rights reserved.
منابع مشابه
A Projected Alternating Least square Approach for Computation of Nonnegative Matrix Factorization
Nonnegative matrix factorization (NMF) is a common method in data mining that have been used in different applications as a dimension reduction, classification or clustering method. Methods in alternating least square (ALS) approach usually used to solve this non-convex minimization problem. At each step of ALS algorithms two convex least square problems should be solved, which causes high com...
متن کاملPositive solution of non-square fully Fuzzy linear system of equation in general form using least square method
In this paper, we propose the least-squares method for computing the positive solution of a $mtimes n$ fully fuzzy linear system (FFLS) of equations, where $m > n$, based on Kaffman's arithmetic operations on fuzzy numbers that introduced in [18]. First, we consider all elements of coefficient matrix are non-negative or non-positive. Also, we obtain 1-cut of the fuzzy number vector solution of ...
متن کاملA robust least squares fuzzy regression model based on kernel function
In this paper, a new approach is presented to fit arobust fuzzy regression model based on some fuzzy quantities. Inthis approach, we first introduce a new distance between two fuzzynumbers using the kernel function, and then, based on the leastsquares method, the parameters of fuzzy regression model isestimated. The proposed approach has a suitable performance to<b...
متن کاملExternal and Internal Incompressible Viscous Flows Computation using Taylor Series Expansion and Least Square based Lattice Boltzmann Method
The lattice Boltzmann method (LBM) has recently become an alternative and promising computational fluid dynamics approach for simulating complex fluid flows. Despite its enormous success in many practical applications, the standard LBM is restricted to the lattice uniformity in the physical space. This is the main drawback of the standard LBM for flow problems with complex geometry. Several app...
متن کاملA meshless discrete Galerkin method for solving the universe evolution differential equations based on the moving least squares approximation
In terms of observational data, there are some problems in the standard Big Bang cosmological model. Inflation era, early accelerated phase of the evolution of the universe, can successfully solve these problems. The inflation epoch can be explained by scalar inflaton field. The evolution of this field is presented by a non-linear differential equation. This equation is considered in FLRW model...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Neurocomputing
دوره 118 شماره
صفحات -
تاریخ انتشار 2013